раздел генетики (См.
Генетика), изучающий наследственность и изменчивость высших
растений (генетические исследования грибов и водорослей обычно относят к генетике микроорганизмов (См.
Генетика микроорганизмов)), Для генетического изучения
растений, кроме методов, которыми пользуются в др. областях генетики (в частности гибридологического анализа (См.
Гибридологический анализ)), применяют следующие методы. С помощью моносомного анализа определяют роль каждой хромосомы в наследовании и развитии различных признаков
растений. Этим методом (разработанным на дурмане) пользуются при изучении ряда аллополиплоидов (некоторых пшениц, хлопчатника), а также диплоидов (ячменя). Большое значение в Г. р. приобретает экспериментальный мутагенез который даёт огромное разнообразие новых форм, используемых в селекции, и ценный материал для изучения генетики отдельных видов
растений. С помощью мутантов составляют
Генетические карты хромосом;
на них исследуют действие изменённого гена (в гомо- и гетерозиготном состоянии) на развитие отдельных признаков в разных условиях среды, на физиологические и биохимические особенности
растений. Изучение мутантов способствует выяснению эволюции того или иного вида. К методам исследования эволюции
растений относятся также
Гибридизация и анализ конъюгации хромосома в мейозе у гибридов (неродственно хромосомы не конъюгируют). Важный метод - искусственный ресинтез существующих видов путём гибридизации и последующего удвоения числа хромосом (см.
Полиплоидия). Значительную роль в эволюции
растений, в том числе многих культурных (пшеницы, овса, хлопчатника, картофеля, плодовых и др.), играет
Аллополиплоидия. После открытия действия алкалоида колхицина, препятствующего расхождению удвоившихся хромосом к разным полюсам клетки, для получения новых, иногда очень ценных форм широко используется
Автополиплоидия. Сочетая методы отдалённой гибридизации и цитогенетики (См.
Цитогенетика), изучают роль отдельных хромосом (и их участков) в наследовании признаков и разрабатывают приёмы, позволяющие получать вставки участков хромосом диких
растений, обусловливающие развитие ценных признаков (например, устойчивости к ржавчине), в хромосомы культурных
растений. Роль ядра и цитоплазмы в наследовании и развитии признаков исследуют, применяя отдалённую гибридизацию и анализируя природу мужской цитоплазматической стерильности, используемой при получении гетерозисных форм. В Г. р. широко исследуются
Апомиксис и явление самонесовместимости, т. е. неспособности
растений к самооплодотворению, а также генетические особенности
растений само- и перекрёстноопылителей, вегетативно и апомиктически размножающихся форм. В Г. р. всё больше проникают идеи и методы молекулярной биологии (См.
Молекулярная биология) (гибридизация ДНК, ДНК - РНК, изучение изозимов и др.). Методы популяционной генетики (См.
Популяционная генетика) и биометрии (См.
Биометрия) применяют в Г. р. для разграничения генотипических и паратипических элементов в общей фенотипической изменчивости признаков, что усиливает эффективность искусственного отбора. Все эти методы используют для улучшения хозяйственно ценных свойств с.-х.
растений: урожайности, устойчивости к неблагоприятным условиям среды, ряда биохимических и технологических особенностей растения (или его зерна), особенностей развития (озимость, яровость, раннеспелость и т.д.). Из высших
растений генетически наиболее изучены кукуруза, арабидопсис (растение семейства крестоцветных, "растительная дрозофила" - модельный объект генетических исследований), горох, томаты, ячмень. У этих
растений методами гибридизации установлена локализация генов и составлены карты хромосом. Интенсивно изучается цитогенетика мягкой пшеницы - сложного 42-хромосомного аллополиплоида, возникшего в процессе эволюции при естественной гибридизации трёх разных злаков с последующим удвоением числа хромосом у гибридов. Вклад Г. р. в селекцию огромен. Это, например, использование
Гетерозиса в селекции кукурузы на основе мужской стерильности; введение высокоурожайным гибридам и сортам кормового ячменя генов, обеспечивающих высокое содержание лизина в зерне; создание низкорослых неполегающих высокоурожайных сортов пшеницы с использованием генов карликовости ("зелёная революция" в Индии и др. странах); выведение урожайных и сахаристых триплоидных гибридов сахарной свёклы.